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LORENTZ-POINCARÉ VERSION OF SPECIAL RELATIVITY

Special relativity (SR) is usually thought to enforce us to abandon
the classical concepts of separated space & time.

But this is not true in the Lorentz-Poincaré version of SR, which
sees the space contraction and time dilation as absolute effects of
motion through the “ether”
(Prokhovnik: The Logic of Special Relativity, C.U.P. (1967). + others)

The inertial time of the preferred inertial frame (ether) is thought
of as the “true time”, and the simultaneity defined in the ether is
thought of as the “absolute simultaneity”.

Yet because Lorentz-Poincaré theory is really equivalent to SR,
that ether is indetectable and all inertial frames are equally good
candidates for being the ether!
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SCALAR ETHER THEORY OF GRAVITATION (SET)

But SR doesn’t include gravity. Gravity might violate relativity and
reveal the ether. (Note that even GR doesn’t obey SR’s relativity
principle, since there are no global inertial frames and no global
Lorentz transformations in GR.)

Such a violation does happen in SET, which starts from gravity as
being Archimedes’ thrust in a fluid ether filling the space
(MA, Found. Phys. 34, 1703 (2004)).

SET coincides with SR when the gravitational field vanishes.

It endows spacetime with two metrics: a flat “background” metric
γ0 and a curved “physical” metric γ. Motion is defined by an
extension of Newton’s 2nd law to a curved spacetime.

https://arxiv.org/abs/physics/0404103
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ELECTRODYNAMICS IN THE PRESENCE OF GRAVITY

The eqs. of electrodynamics of GR rewrite those of SR by using
the “comma goes to semicolon” rule: , ν → ; ν

(partial derivatives → covariant derivatives).

Not possible in SET, for the Dynamical Equation isn’t generally
Tλν

;ν = 0 (which rewrites Tλν
,ν = 0 valid in SR).
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ELECTRODYNAMICS IN THE PRESENCE OF GRAVITY IN SET

In SET, first Maxwell group unchanged. Second group was got by
applying the Dynamical Eqn of SET to a charged medium in the
presence of Lorentz force, assuming that (as is the case in GR):

(A) Total energy tensor T = Tcharged medium + T field.

The additivity (A) leads to a form of Maxwell’s 2nd group in SET
(MA, Open Phys. 14, 395 (2016), or Proc. IARD 2016: J. Phys. Conf.

Ser. 845, 012014 (2017)).

But that form of Maxwell’s 2nd group in SET predicts charge
production/destruction at untenable rates ⇒ discarded
(MA, Open Phys. 15, 877 (2017)).

https://doi.org/10.1515/phys-2016-0045
http://iopscience.iop.org/article/10.1088/1742-6596/845/1/012014
http://iopscience.iop.org/article/10.1088/1742-6596/845/1/012014
https://www.degruyter.com/view/j/phys.2017.15.issue-1/phys-2017-0105/phys-2017-0105.xml
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NECESSITY OF THE INTERACTION TENSOR IN SET

The additivity assumption (A) is contingent and may be
abandoned.

Means introducing “interaction” energy tensor T inter such that

T (total) = Tcharged medium + T field +T inter . (1)

One then has to constrain the form of T inter and derive eqs for it.
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FORM OF THE INTERACTION TENSOR

In SR, the additivity assumption (A) holds, thus T inter = 0.

In SET we may impose that T inter should be Lorentz-invariant in
the situation of SR, i.e. when the metric γ is Minkowski’s metric
γ0 (γ0

µν = ηµν in Cartesian coordinates).

This leads uniquely to the following definition:

Tµ
inter ν := p δµν , or (Tinter)

µν := p γµν , (2)

with some scalar field p. (MA, J. Geom. Sym. Phys. 50, 1–10 (2018);

MA, Open Phys. 16, 488 (2018))

https://hal.archives-ouvertes.fr/hal-01797592
https://hal.archives-ouvertes.fr/hal-01797592
https://www.degruyter.com/view/j/phys.2018.16.issue-1/phys-2018-0065/phys-2018-0065.xml
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INTERACTION ENERGY

Corresponding interaction energy: Einter := T 00
inter = pγ00.

The medium with energy tensor (Tinter)
µν := p γµν can be counted

as “dark matter”, because:

it isn’t localized inside usual matter: p 6= 0 at a generic point;

it’s gravitationally active: T 00 = source of grav. field in SET;

it is not usual matter (e.g. no velocity can be defined).
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EQUATION FOR THE SCALAR FIELD p (1)

With the interaction energy tensor (2) we have just one unknown
more: the scalar field p. So we need just one scalar eqn more.

We may add charge conservation as the new scalar eqn. Then the
system of eqs of electrodynamics of SET is again closed, and
satisfies charge conservation.

Based on that closed system, eqs. were derived that, in principle,
determine the field p in a given general EM field (E,B) and in a
given weak gravitational field with Newtonian potential U
(MA, Open Phys. 16, 488 (2018)).

https://www.degruyter.com/view/j/phys.2018.16.issue-1/phys-2018-0065/phys-2018-0065.xml
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EQUATION FOR THE SCALAR FIELD p (2)

Main equation is the following PDE for p:

div4 (G .∇4p) := (Gµν p,ν),µ = f . (3)

Gµν : the components of antisymmetric spacetime tensor G :
inverse tensor of EM field tensor of the first approximation, that
obeys the flat-spacetime Maxwell equations.

In addition, in Eq. (3), we have

f :=
(
d i∂TU

)
,i
. (4)

d i (i = 1, 2, 3): components of a spatial vector d made with (E,B).

Time derivative ∂TU taken in the preferred frame.
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HOMOGENIZING THE PDE FOR T inter

Need to integrate on a galactic scale r ∼ 1019m the PDE (3) for
the scalar field p.

But: given fields G and f in (3) vary on scale r ∼ λ ' 10−6m and
t ∼ λ/c, like E and B. No chance to succeed in the integration!

Situation typical of homogenization theory.

Aim of that theory: to get “homogenized” PDEs allowing one to
describe at the macroscopic scale the medium, assumed periodic or
quasi-periodic at a microscopic scale.

For Eq. (3), the “medium” is characterized by the pair of given
heterogeneous fields (G , f ).
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A BIT MORE ON HOMOGENIZATION THEORY

Considers two spacetime variables related by a small parameter
ε� 1:

slow variable X: browses medium at macroscopic scale

quick variable, Y = X/ε: an O(1) variation of it browses the
quasi-period of the medium.

Fields are stated to be functions of X and X
ε , periodic or

quasi-periodic w.r.t. X
ε .

Asymptotic expansions are stated, e.g.

pε(X) = p0 (X,Y) ε0 + p1 (X,Y) ε+ O(ε2), Y =
X

ε
(5)
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HOMOGENIZING THE PDE FOR T inter: THE DIFFERENT

POSSIBLE WAYS

Depending on which spacetime variable is considered primordial,
three possibilities:

Time Homogenization: Homogenizatn theory applies quite
straightforwardly (IARD 2022). But the remaining space
dependence at scale r ∼ λ ' 10−6m prevents integration of
the PDE at galactic scale.

Space Homogenization: Homogenizn theory applies less well.
Anyway, time dependence at scale t ∼ λ/c also prevents
integration of the PDE at galactic scale.

Spacetime Homogenization.
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SPACETIME HOMOGENIZATION

The PDE (3) for p has just the same form as the stationary heat
conduction equation for the temperature θ, except that here we
have 4-d spacetime instead of 3-d space ⇒ May adapt known
results: Caillerie, summer school Quiberon 2012.

Main result: homogenized PDE has same form as (3), replacing G
by a “homogenized” tensor GH. However, GH is not the local
spacetime average of “microscopic” tensor G :

G
H obtained by solving a boundary value problem on a local

microscopic cell for the linear first-order PDE

kµ χν, µ = −kν (ν = 0, ..., 3), kν := Gµν
, µ. (6)

To be solved by finite element method. This has been numerically
implemented! But then, still need to solve

(
GH µν P,ν

)
,µ

= F for

the unknown P := 〈p〉 and with data F := 〈f 〉...

http://mam.ida.upmc.fr/Telechargements/cours-Caillerie.pdf
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SPACETIME AVERAGING

Because Gµν = −G νµ, Eq. (3) rewrites as a first-order PDE:

kνp,ν = f , or k.∇p = f (∇ := ∇4). (7)

And again because Gµν = −G νµ, we have

div k := div4 k := kν, ν := Gµν
, µ ,ν = 0. (8)

Recall: all fields here vary with pseudo-periods λ ' 1µm and
T ' λ/c , extremely small w.r.t. galactic scales.

We assume that the fields k and ∇p are “locally
macro-homogeneous”. I.e., they are slow variations of
macro-homogeneous fields. In brief, the latter means that the
averaged fields K = k and ∇p are constant. Details follow.
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MACRO-HOMOGENEOUS FIELDS k AND ∇p

We provisionally forget the slow variation of the fields. We assume
(MA, Arch. Mech. 43, 191 (1991) for k = stress & p = velocity fields):

1) k = k0 + δk with δk bounded and, for cubes Ω of side R(Ω),

1

V (Ω)

∫
Ω
δk dV → 0 as R(Ω)→∞. (9)

2) p(X) = g0.X + δp, with (∂Ω being the boundary of the cube Ω):

1

V (Ω)

∫
∂Ω
|δp| dS → 0 as R(Ω)→∞. (10)

3) div k = 0. [This is always true for the relevant field k, Eq. (8).]

https://rcin.org.pl/Content/69921/PDF/WA727_18046_43-2-3-1991_AMS_Arminjon-04.pdf
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MACRO-HOMOGENEOUS FIELDS k AND ∇p
(CONTINUED)

It is easy to show that:

1) ⇒ k
Ω

:= 1
V (Ω)

∫
Ω k dV → k0 as R(Ω)→∞.

2) ⇒ ∇p Ω → g0 as R(Ω)→∞.

Using that, one can prove that 1)-2)-3) imply that

∆Ω := k.∇p Ω − k
Ω
.∇p Ω → 0 as R(Ω)→∞. (11)

Thus, if k and ∇p are macro-homogeneous and div k = 0, we have
in practice

k.∇p = k .∇p. (12)
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AVERAGED PDE FOR LOCALLY

MACRO-HOMOGENEOUS FIELDS k AND ∇p

Using the latter eq (12), the PDE (7) averages to

K νP,ν = F , or K.∇P = F K := k, P := p, F := f

(13)
i.e., the same as (7), but with spacetime-averaged fields.

Those averages to be taken at a scale where k and ∇p are
(approximately) macro-homogeneous. (Now R(Ω) can’t be
arbitrarily large.)

In view of the huge ratio here between the galactic scale and the
micro-scale (typical wavelength and pseudoperiod), there is enough
room.
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SOLVING THE PDE FOR P (OR p)

The PDE (13) for P rewrites as the advection equation

∂T P + U j ∂jP = S , (14)

where
S := cF/K 0, U j := cK j/K 0. (15)

Therefore, on the characteristic curves

d x
dT = U(T , x), x(T0) = x0, (16)

we have
dP

dT
=
∂P

∂T
+
∂P

∂x j
d x j

dT
= S(T , x), (17)

so

P(T , x(T )) = P(T0, x0) +
∫ T
T0

S(t, x(t)) d t. (18)
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CALCULATING THE MICRO-FIELD kν

– The 4-vector ”micro-field” kν depends only on the (micro) EM
field (E,B):

k0 =
−c

(E.B)2
B.∇(E.B), (19)

(k i ) =
1

(E.B)2

(
∂ (E.B)

∂T
B− E ∧ (∇(E.B))

)
. (20)

To compute kν , we use the “Maxwell model of the interstellar
radiation field”, based on axial symmetry (of the galaxy and the
ISRF) as a relevant approximation
(MA: Open Phys. 18, 255 (2020); Open Phys. 19, 77 (2021); Adv.

Astron. 2021, 5524600 (2021); Open Phys. 21, 20220253 (2023)).

https://www.degruyter.com/view/journals/phys/18/1/article-p255.xml
https://www.degruyter.com/document/doi/10.1515/phys-2021-0008/html
https://doi.org/10.1155/2021/5524600
https://doi.org/10.1155/2021/5524600
https://doi.org/10.1515/phys-2022-0253


SET Electrodynamics in SET PDE for T inter Averaging the PDE for T inter Solving the PDE for P Conclusion

THE AVERAGED FIELD K ν

The micro-field kν is computed with the said model on a 3D
spacetime “fine” grid
(axisymmetry ⇔ independence of φ⇒ variables t, ρ, z):

xµk = xµ0 + (k − 1)δµ, µ = 0, 1, 2; k = 1, ...,Nµ.

Then we take the local spacetime average K ν of the field kν on a
“rough” grid with steps δµ g = gδµ (g integer, say g = 6).

The average is done by considering, for each point of the rough
grid, its (2g + 1)3 nearest neighbours of the fine grid, thus a
discrete averaging.

Then we calculate U j = cK j/K 0 whose integral lines are the
characteristics.
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CHARACTERISTIC CURVES

Currently we compute some characteristic curves (16):
We select two sets of initial conditions: T = T0 and positions in
galactic frame EV (relative velocity V w.r.t. ether frame E):

1) either φ0 variable and z ′0 = Z0 given:
x ′0 = ρ0 cos(φ0), y ′0 = ρ0 sin(φ0), φ0 = (iφ − 1)× 2π

Nφ
, iφ = 1, ...,Nφ,

2) or z ′0 variable and φ0 = 0 given:
x ′0 = ρ0, y

′
0 = 0, z ′0 = Z0 + (iZ − 1)δZ , iZ = 1, ...,NZ .

In both cases, positions x0, y0, z0 in ether frame E by Lorentz
transformation, imposing time of E is T = T0. Note that
kν := Gµν

, µ is a 4-vector.
We then numerically integrate the ODE (16) for the characteristic
curves.
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CONCLUSION

In the alternative gravity theory “SET”, electromagnetism in the
presence of gravitation demands to introduce an additional energy
tensor T inter, depending on a scalar field p.

This exotic energy might contribute to dark matter. The PDE (7)
was derived: governs the field p in given EM + gravity fields.

Developed a model that provides the EM field in a galaxy.

Quick variation of EM field prevents integration of (7) in a galaxy.
Homogenization theory not found to provide tractable results.

Using the theory of macro-homogeneous fields, proved that the
PDE stays unchanged but with spacetime-averaged fields.

Currently able to compute characteristic lines at sub-kpc scale.
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